목록전체 글 (44)
firstStep

3-5 정형 데이터 마이닝 📊 Confusion Matrix부터 ROC-AUC까지, 데이터 마이닝 모델 평가 지표 총정리!데이터 분석 모델을 만들고 나면 가장 먼저 궁금해지는 게 하나 있죠. "정말 이 모델이 잘 작동하는 걸까?" 그걸 제대로 평가해주는 도구들이 바로 Confusion Matrix, ROC-AUC, Lift, Silhouette 같은 성능 지표입니다. 이번 글에서는 데이터 마이닝에서 꼭 알아야 할 이 네 가지 핵심 평가 지표를 초보자도 쉽게 이해할 수 있도록 정리해봤어요. 안녕하세요, 데이터 공부하는 여러분! 모델을 만드는 것도 중요하지만, 그 모델이 실제로 얼마나 잘 작동하는지 평가하는 것은 더 중요하다는 사실, 알고 계셨나요? 특히 ADsP 시험에서는 단순히 용어 암기를 넘어서, 각..

3-6 모델링 실무 & 검증 모델링 실무 핵심 가이드: Train/Test Split부터 과적합 방지까지 완전 정복데이터 분석 모델을 만들다 보면 꼭 마주치는 순간이 있어요. 바로 "정확도는 높은데 왜 실제에선 잘 안 맞지?"라는 의문이죠. 이럴 때 필요한 게 바로 Train/Test Split과 교차검증, 그리고 과적합 방지 전략이에요.저도 처음 ADsP 공부할 때, 모델 성능을 높이려면 무조건 정확도만 올리면 되는 줄 알았어요. 근데 그게 함정이더라구요. 진짜 중요한 건 일반화 성능이라는 사실! 그래서 오늘은 ADsP 실전 대비는 물론, 데이터 분석 실무에서도 바로 써먹을 수 있는 Train/Test 분할, K-Fold Cross Validation, 그리고 Regularization, Drop-ou..

3-5 정형 데이터 마이닝 ADsP 연관 규칙 분석 완전 정복 🔍 Apriori & FP-Growth 쉽게 배우기혹시 이런 적 있으신가요? 쇼핑몰에서 책 한 권을 샀을 뿐인데, “이 책을 구매한 고객은 이런 책도 샀어요”라는 추천을 보고 나도 모르게 또 클릭하게 되는 경험. 사실 이런 추천의 배경에는 연관 규칙 분석이라는 멋진 데이터 마이닝 기법이 숨겨져 있답니다. Apriori와 FP-Growth 알고리즘은 바로 그런 ‘숨은 패턴’을 찾아내는 핵심 도구죠. 이번 포스트에서는 ADsP 시험에도 자주 등장하는 이 연관 규칙 분석 기법들을 아주 쉽게, 예제와 함께 설명드릴게요. 특히 초보자도 이해할 수 있게 데이터마이닝의 핵심 원리부터 차근차근 풀어보려고 해요. 그리고 마무리에는 [모의고사 포함] 파트도 ..